

1 **Upside-down fluxes Down Under: CO₂ net sink in winter and 2 net source in summer in a temperate evergreen broadleaf forest**

3 Alexandre A. Renchon¹, Anne Griebel¹, Christopher A. Williams², Belinda Medlyn¹, Remko A.
4 Duursma¹, Craig VM Barton¹, Chelsea Maier¹, Matthias M. Boer¹, Peter Isaac³, David Tissue¹, Victor
5 Resco de Dios⁴, Elise Pendall¹

6 ¹*Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.*

7 ²*Clark University, Graduate School of Geography, Worcester, Massachusetts 01610, USA.*

8 ³*CSIRO Oceans & Atmosphere Flagship, Yarralumla, ACT, 2600, Australia.*

9 ⁴*Department of Crop and Forest Sciences and Agrotecnio Center, University of Lleida, E-25198
10 Lleida, Spain.*

11 **Abstract**

12 Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen
13 forests because of their moderate climates and subtle changes in canopy phenology. We assessed the
14 climatic and biotic drivers of the seasonality of net ecosystem-atmosphere CO₂ exchange (NEE) of a
15 eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate
16 is characterized by a mean annual precipitation of 800 mm and a mean annual temperature of 18 °C,
17 hot summers and mild winters, with highly variable precipitation. In the three-year study, the
18 ecosystem was a small sink in 2014 (54 g C m⁻² y⁻¹), a stronger sink in 2015 (183 g C m⁻² y⁻¹) and
19 even stronger sink in 2016 (337 g C m⁻² y⁻¹), but these variations were not related to precipitation.
20 Daily net C uptake was always detected during the cooler, drier winter months (June through August),
21 while net C loss occurred during the warmer, wetter summer months (December through February).
22 Gross primary productivity (GPP) seasonality was low, despite longer days with higher light intensity
23 in summer, because vapour pressure deficit (D) and air temperature (T_a) restricted surface
24 conductance during summer while winter temperatures were still high enough to support
25 photosynthesis. Maximum GPP during ideal environmental conditions was correlated with canopy
26 leaf area index (LAI) ($r^2 = 0.24$), which increased rapidly after mid-summer rainfall events.
27 Ecosystem respiration (ER) was highest during summer in wet soils and lowest during winter months.
28 ER had larger seasonal amplitude compared to GPP, and therefore drove the seasonal variation of
29 NEE. Because summer carbon uptake may become increasingly limited by atmospheric drought and
30 high temperature, and ecosystem respiration could be enhanced by rising temperature, our results
31 suggest the potential for large-scale seasonal shifts in NEE in sclerophyll vegetation under climate
32 change.

33 *Keywords:* net ecosystem exchange, seasonal variability, atmospheric drought, canopy phenology

34

35 1. Introduction

36 Forests and semi-arid biomes are responsible for the majority of global carbon storage by terrestrial
37 ecosystems (Dixon et al., 1994; Schimel et al., 2001; Pan et al., 2011; Poulter et al., 2014).
38 Photosynthesis and respiration by these biomes strongly influence the seasonal cycle of atmospheric
39 CO_2 (Keeling et al., 2001; Baldocchi et al., 2016). Continuous measurements of land-atmosphere
40 exchanges of carbon, energy and water provide insights into the seasonality of forest ecosystem
41 processes, which are driven by the interactions of climate, plant physiology and forest composition
42 and structure (Xia et al., 2015). Net ecosystem exchange (NEE) seasonality is relatively well
43 understood in cool-temperate ecosystems; deciduous trees can only photosynthesize when they have
44 leaves and NEE dynamics are thus principally influenced by the phenology of canopy processes. NEE
45 of deciduous forests thus has a more pronounced seasonality than that of evergreen conifer forests at
46 similar latitudes (Novick et al., 2015). For high-latitude evergreen conifer forests, NEE seasonality is
47 strongly limited by cold temperature limitation of photosynthesis (Kolari et al., 2007) and respiration.
48 In contrast, seasonality of NEE in evergreen broadleaf forests, typically occurring in warm-temperate
49 and tropical regions, is much less well understood (Wu et al., 2016; Restrepo-Coupe et al., 2017).
50 The seasonality of gross primary productivity (GPP) in evergreen broadleaf forests may be driven by
51 climate (e.g. dry/wet seasons) and/or by canopy dynamics (Wu et al., 2016). In tropical evergreen
52 forests, air temperature and day length are similar seasonally, but precipitation seasonality can be
53 strong, with higher radiation and temperature (1 or 2 °C higher) in the dry season (Trenberth,
54 1983; Windsor, 1990). Counter-intuitively, GPP can be higher during the dry season, as cloud cover
55 may limit productivity in the wet season (Graham et al., 2003; Saleska et al., 2003; Hutyra et al., 2007).
56 Canopy dynamics can be an important determinant of GPP seasonality in evergreen broadleaf forests;
57 although leaves are present in the canopy year-round in evergreen canopies, LAI may show
58 considerable temporal variability seasonally as new leaves are produced and old leaves die, especially
59 during leaf flush and senescence periods (Duursma et al., 2016; Wu et al., 2016). The leaf light use
60 efficiency and water use efficiency may both vary as leaves age: young leaves and old leaves are less
61 efficient than mature leaves, reflecting changes in photosynthetic capacity (Wilson et al., 2001; Wu et
62 al., 2016). The timing of leaf flush and senescence can depend on the environment and on species;
63 environmental stress, such as drought, can induce the process of senescence (Munné-Bosch and
64 Alegre, 2004; Lim et al., 2007).
65 In temperate evergreen broadleaved forests, such as eucalypt-dominated sclerophyll vegetation in
66 Australia, precipitation can be seasonal or aseasonal; furthermore, day length and temperature vary
67 significantly between winter and summer. GPP can be limited by frost during winter and by drought
68 during summer. Atmospheric drought indicated by high vapor pressure deficit (D), and soil drought
69 have different impacts on GPP, but they can interact to impact surface conductance (G_s) (Medlyn et
70 al., 2011; Novick et al., 2016). In Australia's temperate eucalypt forests, canopy rejuvenation takes
71 place in summer and is linked to heavy rainfall events (Duursma et al., 2016). However, since leaf
72 flushing and shedding occur simultaneously in eucalypt canopies (Pook, 1984; Duursma et al., 2016),
73 the overall canopy volume can remain stable while the distribution of canopy volume changes with
74 height (Griebel et al., 2015). Eucalypt forests in southeast Australia have been found to act as carbon
75 sinks all year long, with greater uptake in summer (van Gorsel et al., 2013; Hinko-Najera et al., 2017).
76 Although canopy characteristics are key to understanding ecosystem fluxes, their dynamics in
77 Australian ecosystems can be particularly challenging to detect using standard vegetation indices
78 (Moore et al., 2016). Nevertheless, the normalized difference vegetation index (NDVI) has
79 successfully explained variability in photosynthetic capacity in Mediterranean, mulga and savanna
80 ecosystems (Restrepo-Coupe et al., 2016).

81 The environmental and biotic controls on the seasonal dynamics of ecosystem fluxes in broadleaved
82 evergreen forests are still poorly understood. Our objective was to determine the seasonality of
83 ecosystem CO₂ and H₂O fluxes in a dry sclerophyll Eucalyptus forest; we evaluated the role of
84 environmental drivers (PAR, T_a, SWC and D) and canopy dynamics (as measured with NDVI, LAI,
85 litter fall and leaf age) in regulating the seasonal patterns of net ecosystem exchange (NEE), gross
86 primary productivity (GPP), ecosystem respiration (ER), evapotranspiration (ET) and surface
87 conductance (G_s) in an evergreen forest near Sydney, Australia. We also compared leaf-level to
88 ecosystem-level water and carbon exchange in response to drivers, in order to gain confidence in our
89 results and gain insights about the emergent properties from leaf to ecosystem scale. We hypothesised
90 that canopy phenology (LAI and leaf age) explains temporal variation in photosynthetic capacity (PC)
91 and G_s. We anticipated that the ecosystem would be a carbon sink all year long.

92

93 **2. Material and methods**

94 **2.1 Site description**

95 The field site is the Cumberland Plain forest SuperSite (de Dios et al., 2015) of the Australian
96 Terrestrial Ecosystem Research Network (<http://www.tern.org.au/>), located 50 km west of Sydney,
97 Australia, at 19 m elevation, on a nearly flat floodplain of the Nepean-Hawkesbury River (latitude -
98 33.61320; longitude 150.72446). Mean mid-afternoon (3 pm) temperature is 18 °C (max. 28.5 °C in
99 January and min. 16.5 °C in July) and average precipitation is 801 mm year⁻¹ (mean monthly max. is
100 96 mm in January, and min. is 42 mm in September). The soil is classified as a Kandosol and consists
101 of a fine sandy loam A horizon (0-8 cm) over clay to clay loam subsoil (8-40 cm), with pH of 5 to 6
102 and up to 5% organic C in the top 10 cm (Karan et al., 2016). The flux tower is in a dry sclerophyll
103 forest, with 140 Mg C ha⁻¹ aboveground biomass and stand density of ~500 trees ha⁻¹. The
104 predominant canopy tree species are *Eucalyptus moluccana* and *E. fibrosa*, which grow to an average
105 canopy height of ~25 m and host a large population of mistletoe (*Amyema miquelii*). In addition, the
106 mid-canopy (5-12 m) is dominated by *Melaleuca decora*, the understory is dominated by *Bursaria*
107 *spinosa* with various shrubs, forbs, grasses and ferns present in lower abundance.

108 **2.2 Environmental measurements**

109 Air temperature (T_a) and relative humidity (RH) were measured using HMP45C (Vaisala, Vantaa,
110 Finland) sensors at 7 m and 29 m heights. Vapour pressure deficit (D) was estimated from T_a and RH.
111 Photosynthetically active radiation above the canopy (PAR, W m⁻²) was measured using an LI190SB
112 (Licor Inc., Lincoln NE, USA), and incoming and outgoing short and longwave radiation were
113 measured using a CNR1 radiometer (Kipp & Zonen, Delft, Netherlands). Ancillary data were logged
114 on CR1000 or CR3000 dataloggers (Campbell Scientific, Logan UT, USA) at 30 min intervals.
115 Mixing ratios of CO₂ in air were also measured at 0.5 m, 1 m, 2 m, 3.5 m, 7 m, 12 m, 20 m, and 29 m
116 above the soil surface using a LI840A Gas Analyzer (Licor Inc., Lincoln NE, USA); data from each
117 height were logged on a CR1000 datalogger once every 30 minutes (1 minute air sampling per
118 height).

119 Ground heat flux and soil moisture were averaged between two locations to represent the variable
120 shading in the tower footprint. One location had a HFP01 heat flux plate and the other has a self-
121 calibrating heat flux plate (HFP01SC) (Hukseflux, XJ Delft, Netherlands) installed at 8 cm below the
122 soil surface. The heat flux plates were paired with a CS616 water content reflectometer (Campbell
123 Scientific, Logan UT) installed horizontally at 5 cm below the soil surface and a TCAV averaging
124 thermocouple (Campbell Scientific, Logan UT) installed with thermocouples at 2 cm and 6 cm below
125 the soil surface for each pair. A CS616 installed vertically measured average soil water content from 7
126 to 37 cm (CS616). Rainfall was measured at an open area with a tipping bucket 2 km away from the
127 study site.

128 **2.3 Net ecosystem exchange**

129 Continuous land-atmosphere exchange of CO₂ mass (net ecosystem exchange, NEE) was quantified
130 from direct measurements of the different components of the theoretical mass balance of CO₂ in a
131 control volume:

$$NEE = F_{CT} + F_{CS} + (F_{CAH} + F_{CAV}) \quad (1)$$

132 Where F_{CT} is the vertical turbulent exchange flux, F_{CS} is the change in storage flux, and F_{CAH} and F_{CAV}
133 are the horizontal and vertical advection fluxes –assumed negligible when atmospheric turbulence is
134 sufficient (Balocchi et al., 1988; Aubinet et al., 2012). We used change-point detection of the friction

135 velocity (u^*) threshold (Barr et al., 2013) to determine the turbulence threshold above which NEE (the
 136 sum of F_C and S_C) is independent of u^* . However, we found no clear dependence of NEE on u^* hence
 137 no clear threshold (Figure S1), so we used a threshold of 0.2 m s^{-1} to be conservative.

138 The calculation of each term, and the assumptions required for them to be representative of each half-
 139 hour flux are detailed below.

140 *2.4 Vertical turbulent flux (F_{CT})*

141 The vertical turbulent fluxes of CO_2 (F_{CT} , $\mu\text{mol m}^{-2} \text{ s}^{-1}$) and water (F_{WT} , $\text{mmol m}^{-2} \text{ s}^{-1}$) were measured
 142 using the eddy-covariance method (Baldoocchi et al., 1988). Concentration (c) of CO_2 or water vapor
 143 (open-path IRGA (LI-7500A, Licor Inc., Lincoln NE, USA)) and vertical wind speed (w) (CSAT 3D
 144 sonic anemometer (Campbell Scientific, Logan UT, USA)) were measured at 10Hz frequency at 29 m
 145 above the ground, and logged on a CR-3000 datalogger (Campbell Scientific, Logan UT, USA). F_{CT}
 146 and F_{WT} are calculated as the average 30 minute covariance of c and w:

$$F_{CT} \text{ or } F_{WT} = \overline{w'c'} \quad (2)$$

147 Vertical turbulent fluxes were calculated from the 10 Hz data, using Eddy-Pro[®] software. The
 148 calculation allowed for up to 10% of missing 10 Hz data. Axis rotation for tilt correction used the
 149 double rotation method (Wilczak et al., 2001). Time lags were compensated using covariance
 150 maximization, within a window of plausible time lags (Fan et al., 1990). We applied the block
 151 averaging method for de-trending (Gash and Culf, 1996). Density fluctuations in the air volume were
 152 corrected using the WPL terms (Webb et al., 1980). Statistical tests for raw data screening followed
 153 (Vickers and Mahrt, 1997), including spike count/removal, amplitude resolution, drop-outs, absolute
 154 limits and skewness and kurtosis tests. Low and high frequency spectral correction followed
 155 (Moncrieff et al., 2004), and (Moncrieff et al., 1997). Each half-hourly flux was associated with a
 156 quality flag (0: good quality, 1: keep for integrations, discard for empirical relationships, 2: remove
 157 from the data); these flags accounted for stationarity tests and turbulence development tests which are
 158 required for good turbulent flux measurements (Foken et al., 2004). In our 3-year record, 51% of F_{CT}
 159 fluxes had a flag of 0, 32% had a flag of 1 and 17% had a flag of 2.

160 *2.5 Storage flux (F_{CS})*

161 The change in storage flux (F_{CS} , $\mu\text{mol m}^{-2} \text{ s}^{-1}$) was measured using a CO_2 profiler system, such that
 162 change of storage flux timestamp was the same as the turbulent flux timestamp. The change in storage
 163 flux was calculated as (Aubinet et al., 2001):

$$F_{CS} = \frac{P_a}{R T_a} \int_0^h \frac{dC(z)}{dt} dz \quad (3)$$

164 Where P_a is the atmospheric pressure (P_a), T_a is the temperature (K), R is the molar gas constant, and
 165 $C(z)$ is CO_2 (ppm) at the height z. As we only measure a limited number of heights, this equation
 166 becomes, in practice:

$$F_{CS} = \left(\frac{\Delta C}{\Delta t} \right)_{k=1} \times z_{k=1} + \sum_{k=2}^n \left\{ \left[\left(\frac{\Delta C}{\Delta t} \right)_k + \left(\frac{\Delta C}{\Delta t} \right)_{k-1} \right] \times \frac{z_k - z_{k-1}}{2} \right\} \quad (4)$$

167 Where k [1 to 8] represents each inlet height. T_a was linearly interpolated from HMP at 29 m and 7 m.
 168 We flagged and replaced the storage flux with a one-point approximation during profiler outages
 169 (25% of the 3-year record), using the change in CO_2 at 29 m height over 30 minutes as derived in
 170 EddyPro (Aubinet et al., 2001). These data were not used for empirical relationships, but kept for

171 annual sum calculations. Storage flux of water vapour was assumed to be negligible. For visualisation
172 of the diurnal course of storage flux and turbulent flux, see Figure S2.

173 **2.6 Gap-filling of environmental variables and NEE separation into gross fluxes**

174 The OzFluxQC processing software, based on SOLO neural network, was used for gap-filling
175 climatic variables and fluxes and for partitioning the NEE into gross primary productivity (GPP) and
176 ecosystem respiration (ER) (Hsu et al., 2002; Isaac et al., 2017), using data with QC flags of 0 and 1
177 (Foken et al., 2004). In brief, gaps were filled following the hierarchy of using variables provided
178 from 1) automatic weather stations from the closest weather station, 2) numerical weather prediction
179 model outputs (ACCESS regional, 12.5 km grid size provided by the Bureau of Meteorology) and
180 lastly 3) monthly mean values from the site-specific climatology. In a next step the continuous climate
181 variables were used to fill all fluxes by utilizing the SOLO neural network with 25 nodes and 500
182 iterations on monthly windows. We selected the drivers based on the highest r^2 , which identified net
183 radiation (F_n), specific heat density (SHD), air temperature (T_a) and wind speed (w_s) for latent heat
184 flux; F_n , T_a and w_s for sensible heat flux and D , T_s , shortwave incoming radiation (F_{sq}) for NEE. In
185 addition, all nocturnal observational data (at night, we assume GPP = 0 so NEE = ER) that passed all
186 quality control checks and the u^* -filter were modelled using T_s , T_a and SWC as drivers. Lastly, this
187 gapfilled data (gap-filled ER from nighttime NEE) was used to infer GPP as the result of NEE - ER.

188 **2.7 Flux footprint**

189 We analysed which turbulent flux was out of the footprint according to (Kljun et al., 2004), using a
190 criterion that at least 75% of the turbulent flux (F_{CT}) should come from within the forest area. We
191 used Nearmap high resolution aerial imagery to determine the extent of the forest ecosystem
192 surrounding the tower. We found that, after u^* filtering, CO₂ turbulent fluxes (F_{CT}) originated from
193 the footprint of interest. We assumed that the ecosystem within the footprint was homogeneous for the
194 purpose of this study.

195 **2.8 Energy balance**

196 We evaluated the energy balance closure with the ratio of available energy (net radiation (R_n) – soil
197 heat flux (G)) to the sum of turbulent heat fluxes (latent heat flux (L) + sensible heat flux (H)). On a
198 daily basis, the energy balance closure was 70% (Figure S3), consistent with the well-known and
199 common issue of a lack of closure (Wilson et al., 2002; Foken et al., 2006; Foken, 2008).

200 **2.9 Surface conductance**

201 Surface conductance (G_s) was derived by inverting the Penman-Monteith equation (Monteith, 1965):

$$G_s = \frac{\gamma L g_a}{\varepsilon R_n + \rho C_p D g_a - L(\varepsilon + \gamma)} \quad (6)$$

202 Where γ is the temperature dependent psychrometric constant (kPa K⁻¹), L is the latent heat flux (W
203 m⁻²), ε is the temperature dependent slope of the saturation-vapor pressure curve (kPa K⁻¹), R_n is net
204 radiation (W m⁻²), ρ is the dry air density (kg m⁻³), D is vapor pressure deficit (kPa), C_p is the specific
205 heat of air (J kg⁻¹ K⁻¹), and g_a is the bulk aerodynamic conductance, formulated as an empirical
206 relation of wind speed (w_s , m s⁻¹) and friction velocity (u^* , m s⁻¹) (Thom, 1972):

$$g_a = \frac{1}{\frac{U}{u^{*2}} + 6.2 u^{*0.67}} \quad (7)$$

207 In the analysis for G_s , we were interested in transpiration (T) rather than evaporation (E), so we
208 excluded data if precipitation exceeded 1 mm in the past 2 days, 0.5 mm in the past 24 hours, and 0.2

209 mm in the past 12 hours (Knauer et al., 2015). We assumed that evaporation (E) is negligible using
210 these criteria (Knauer et al., 2017), which excluded 40% of the data.

211 *2.10 Potential evapotranspiration*

212 Potential evapotranspiration rate (PET) was derived using Penman-Monteith equation (Monteith,
213 1965):

$$PET = \frac{\varepsilon R_n + C_p \rho G_a D}{\gamma [\varepsilon + \gamma(1 + \frac{G_a}{G_{s,max}})]} \quad (8)$$

214 where $G_{s,max}$ is the well-watered reference surface conductance, calculated as the average of G_s at the
215 study site when soil moisture exceeds the 75% quantile and D is above 0.9 and below 1.1 kPa (Novick
216 et al. 2016).

217 *2.11 Dynamics of canopy phenology (leaf area index, litter and leaf production) and
218 photosynthetic capacity*

219 We evaluated the dynamics of canopy leaf area index (LAI) by measuring canopy light transmittance
220 with three under-canopy PAR sensors and one above canopy PAR sensor LI190SB (Licor Inc.,
221 Lincoln NE, USA) following the methods presented in (Duursma et al., 2016). Although we use the
222 term LAI, this estimate does include non-leaf surface area (stems, branches). We collected litterfall
223 (L_f , g m⁻² month⁻¹) in the tower footprint approximately once per month, from nine litter traps (0.14 m⁻²
224 ground area) located near the understory PAR sensors. We estimated specific leaf area (SLA) of
225 Eucalyptus and mistletoe leaves by sampling approximately 50 fresh leaves of each, in June 2017
226 (SLA = 56.4 cm² g⁻¹ for eucalyptus, 40.3 cm² g⁻¹ for mistletoe). For each month, we partitioned the
227 litter into Eucalyptus leaves, mistletoe leaves, and other (mostly woody) components. We used this
228 SLA to estimate leaf litter production (L_p) in m² m⁻² month⁻¹ of eucalyptus, mistletoe, and total as the
229 sum of both. Then, we estimated leaf growth (L_g , m² month⁻²) as the sum of the net change in LAI
230 (ΔL) and L_p . Photosynthetic capacity (PC) is defined as median GPP when PAR is 800-1200 W m⁻²
231 and D is 1.0 to 1.5 kPa.

232 *2.12 Analysis of light-response of NEE*

233 We evaluated the light response of NEE using a saturating exponential function (Eq. 5) to test whether
234 parameters varied between seasons (Mitscherlich, 1909; Aubinet et al., 2001; Lindroth et al., 2008).

$$NEE = -(NEE_{sat} + R_d) \left(1 - \exp \left[\frac{-\alpha PAR}{NEE_{sat} + R_d} \right] \right) + R_d \quad (5)$$

235 where the parameter R_d is the intercept, or NEE in the absence of light, often called dark respiration;
236 NEE_{sat} is NEE at light saturation and α is the initial slope of the curve, expressed in $\mu\text{mol CO}_2 \mu\text{mol}$
237 photon^{-1} and representing light use efficiency when photosynthetically active radiation (PAR) is close
238 to 0. We only used daytime quality checked NEE data to fit the model ($qc = 0$; (Foken et al., 2004),
239 LI-7500 signal strength = max, all inlets of profiler system data available and $u^* > 0.2 \text{ m s}^{-1}$), see
240 Figure S4.

241 *2.13 Leaf gas exchange spot measurements*

242 Spot measurement of leaf-level net photosynthesis at light saturation A_{max} (PAR $\sim 1800 \text{ W m}^{-2}$),
243 transpiration T, stomatal conductance g_s , and D were measured at 1.5 km for the flux tower site, see
244 (Gimeno et al., 2016).

245

246

3. Results

247 *3.1 Seasonality of environmental drivers and leaf area index*

248 The monthly average of daily maximum of air temperature was 16.3 °C during the coldest month
249 (July 2015), and the lowest monthly average of daily maximum PAR was 878 $\mu\text{mol m}^{-2} \text{s}^{-1}$ in the
250 winter (June 2015; Figure 1c). Although less rainfall occurred during winter months compared to
251 summer months, precipitation occurred throughout the year (Figure 1b). Soil volumetric water content
252 in the shallow (0-8 cm) layer was about 10% except immediately following rain events (Figure 1b). In
253 contrast, soil water content in the clay layer (8-38cm) remained above 30% for the duration of the
254 study (data not shown). Average of daily maximum of air temperature ranged from 16.3 °C in July
255 to 31 °C in December 2016; Average of daily maximum D ranged from 0.9 kPa in June 2015 to
256 3 kPa in December 2016 (Figure 1c). For visualisation of seasonal and diurnal trend of radiation, air
257 temperature, D and SWC, see supplement Figure S5.

258 Canopy leaf area index varied between 0.7 (in December 2014) and 1.1 $\text{m}^2 \text{m}^{-2}$ (in February 2015)
259 (Figure 1d). LAI followed a distinct pattern: it peaked in late summer (around January), and then
260 continuously decreased until the new leaves emerged the following year. Litter production was
261 concurrent with leaf growth and also peaked in summer, before and during the leaf flush, and was
262 lower in winter (Figure 1d).

263 *3.2 Seasonality of carbon and water fluxes*

264 Contrary to expectations, the ecosystem was always a sink for carbon in winter (-127 g C m^{-2} in 2014,
265 -135 g C m^{-2} in 2015 and -99 g C m^{-2} in 2016), and usually a carbon source or close to neutral in
266 summer (+97 g C m^{-2} in 2014, +31 g C m^{-2} in 2015 and -15 g C m^{-2} in 2016) (Table 1). Summer GPP
267 was higher ($-460 \pm 112 \text{ g C m}^{-2}$) compared to winter GPP ($-291 \pm 28 \text{ g C m}^{-2}$) (Table 1), that is a
268 difference of $\sim 169 \text{ g C m}^{-2}$. However, summer ER was much higher ($497 \pm 57 \text{ g C m}^{-2}$) compared to
269 winter ER ($171 \pm 26 \text{ g C m}^{-2}$) (Table 1), a difference of $\sim 326 \text{ g C m}^{-2}$. The summer vs. winter ER
270 difference was close to double the GPP difference; thus, ER had a relatively larger effect over the
271 seasonality of NEE.

272 *3.3 Diurnal trend of CO_2 flux and drivers in winter and summer*

273 The diurnal pattern of NEE in clear-sky conditions differed between summer and winter (Figure 2).
274 Relatively speaking, diurnal NEE was more symmetric in the winter than in summer. That is, morning
275 and afternoon NEE pattern resembled a mirror image and total integrated morning NEE was similar to
276 integrated afternoon NEE during the winter, but strong hysteresis occurred in the summer (Figure 2).
277 This pattern also translated into hysteresis in the NEE light response curve in summer, but not in
278 winter (Figure 3).

279 *3.4 Analysis of NEE light response curve*

280 The parameters of the NEE light response in summer and winter are shown in Figure 4 (see methods,
281 Eq. 5). The initial slope of NEE with light (α) showed no clear dependence on T_{soil} in winter but
282 exhibited sensitivity during summer, dropping precipitously at soil temperature above 23 °C (Figure
283 4a). α increased with SWC in winter and summer by a factor of 2 (Figure 4b). In both winter and
284 summer α decreased with D ($D > 1 \text{ kPa}$) and in a similar fashion, approaching to a saturating value of
285 0.01 ($\mu\text{mol } \mu\text{mol}^{-1}$) at a D of about 2 kPa (Figure 4c). The fitted NEE at saturating light (NEE_{sat}) was
286 not related to T_{soil} in winter but decreased with increasing T_{soil} in summer (Figure 4d). NEE_{sat} was
287 higher in winter than in summer for a given SWC. The relationship with D was more complicated,
288 tending to increase with D in winter, but decreasing with increased D in summer, dropping from 9 to
289 3 ($\mu\text{mol } \text{m}^{-2} \text{s}^{-1}$) as D increased from 1 to 4 kPa. R_d was significantly higher in summer than winter

290 across all conditions of T_{soil} , SWC and D (Figure 4g, h, i). R_d increased with T_{soil} in winter and less so
291 in summer. R_d increased with SWC in dry condition in winter and plateaued at 11%; R_d was more
292 sensitive to SWC in summer, doubling from a rate of ~ 4 in dry soils to $\sim 8 \mu\text{mol m}^{-2} \text{s}^{-1}$ in wet soils.

293 *3.5 Atmospheric and soil drought control on GPP, ET, G_s and WUE*

294 We evaluated the effect of soil water content (SWC at 0–8 cm depth) and vapour pressure deficit (D)
295 on GPP, ET, water use efficiency (WUE) and canopy conductance (G_s) under high radiation (“PAR-
296 saturated”; PAR $> 1000 \text{ W m}^{-2}$), after filtering periods following rain events in order to minimise the
297 contribution of evaporation to ET (see Methods) (Figure 5). In summer, PAR-saturated GPP
298 decreased above D $\sim 1.3 \text{ kPa}$, but in winter, GPP did not vary with D. In summer and in winter, GPP
299 increased with SWC (Figure 5a). This is consistent with Figure 4, where R_d and NEE_{sat} both increased
300 with SWC. In summer, PAR-saturated ET increased with D up to $\sim 1.3 \text{ kPa}$, above which it reached a
301 plateau. In winter, ET kept increasing with D, as D rarely exceeded 2 kPa. In both seasons, ET
302 increased with SWC (Figure 5b). Surface conductance decreased with D and SWC especially in
303 summer, indicating strong stomatal regulation (Figure 5b). Water use efficiency (WUE) decreased
304 with increasing D in summer and in winter, because ET increased but GPP declined (Figure 5c).

305 We compared these ecosystem-scale results to the equivalent at the leaf-scale, which are net
306 photosynthesis at light saturation A_{max} (PAR $\sim 1800 \text{ W m}^{-2}$), leaf transpiration T, leaf water use
307 efficiency and stomatal conductance g_s . These leaf level measurements are expressed on a leaf-area
308 basis, as opposite to ground area for ecosystem scale. We observed that A_{max} , T and g_s were more
309 sensitive to D than corresponding ecosystem-scale responses. A_{max} was much higher than GPP_{max} at D
310 $\sim 1 \text{ kPa}$, while g_s was comparable in magnitude to G_s in the same condition. Leaf transpiration peaked
311 around D = 1.2 kPa, while ET plateaued. Leaf water use efficiency was overall higher than ecosystem
312 WUE.

313 *3.6 Canopy phenology control on GPP*

314 Monthly average of photosynthetic capacity (PC) varied by a factor of 2.7 across the study period,
315 ranging from $6.4 \mu\text{mol m}^{-2} \text{s}^{-1}$ before the leaf flush in November 2015 to $19.4 \mu\text{mol m}^{-2} \text{s}^{-1}$ after the
316 leaf flush occurred in March 2016. We expected that PC could be predicted by LAI and/or NDVI and
317 G_s . Leaf area index (LAI) and photosynthetic capacity (PC) were significantly correlated; the slope
318 was significantly different from zero ($p = 0.02$, PC = $10.9 \text{ LAI} + 1.8$, Figure 6). By contrast, NDVI
319 was not significantly correlated with PC (Figure 6). $G_{s,\text{max}}$ was significantly correlated with PC ($p =$
320 0.05 , $r^2 = 0.14$, PC = $520 G_{s,\text{max}} + 8.6$) and LAI ($p = 0.006$, $r^2 = 0.25$, $G_{s,\text{max}} = 0.01 \text{ LAI} - 1.8\text{e-}3$) and
321 with NDVI ($p = 0.003$, $r^2 = 0.24$, $G_{s,\text{max}} = 0.015 \text{ NDVI} - 4.4\text{e-}3$).

322

323

4. Discussion

324 We measured three consecutive years of carbon and energy fluxes in a native evergreen broadleaf
325 Eucalyptus forest, including canopy dynamics and environmental drivers (photosynthetically active
326 radiation, air and soil temperature, precipitation, soil water content, and atmospheric demand). We
327 hypothesised that the Cumberland Plain forest would be a carbon sink all year-round, similar to other
328 eucalypt forests (Keith et al., 2012; Beringer et al., 2016; Hinko-Najera et al., 2017). We also
329 hypothesised higher net carbon uptake during summer, due to warmer temperatures, higher light and
330 longer day length contributing to higher photosynthesis, compared to winter. However, the
331 Cumberland Plain forest was a net source of carbon during summer, and a net sink of carbon during
332 winter.

333 The seasonal pattern of NEE was driven mostly by ER, as the seasonal amplitude of ER was larger
334 than the seasonal amplitude of GPP. The seasonality of ER may be explained by the positive effects
335 of higher temperatures on the rates of autotrophic respiration (Tjoelker et al., 2001), and on the
336 activity of microbes to increase soil organic matter decomposition (Lloyd and Taylor, 1994); soil
337 moisture remained high enough to rarely limit decomposition, especially in the subsoil. The relatively
338 low seasonality of GPP may be partly explained by lower photosynthetic capacity in early summer
339 (before January) when LAI is at its lowest, and the leaves have reached maximum age because new
340 leaves have not yet emerged. The ER-driven seasonality of NEE is in sharp contrast with cold
341 temperate forests where GPP drives the seasonality of NEE. ER-driven NEE seasonality was also
342 observed in an Asian tropical rain forest, as ER was higher than GPP in the rainy season leading to net
343 ecosystem carbon loss, while in the dry season, ecosystem carbon uptake was positive (Zhang et al.,
344 2010). This pattern was also observed in an Amazon tropical forest (Saleska et al., 2003).

345 Diurnal hysteresis of NEE in summer was associated with strong stomatal regulation, induced by high
346 atmospheric demand and high air temperature (Duursma et al., 2014), limiting photosynthesis during
347 the afternoon of warm months (see Figure S6). In winter, low D and moderately warm daytime air
348 temperatures and high PAR were sufficient to maintain high photosynthesis rates throughout most of
349 the day. Two possible explanations of the diurnal hysteresis of NEE in summer are (1) ER is greater
350 in the afternoon compared to morning or (2) GPP is lower in the afternoon compared to morning.
351 Explanation (1) is plausible, as temperature drives autotrophic and heterotrophic respiration; however,
352 it is unlikely as the hysteresis only happened in summer, and not in winter. Explanation (2) could arise
353 from lower afternoon stomatal conductance or lower photosynthetic capacity, or a combination of
354 both or even circadian regulation (de Dios et al., 2015; Jones et al., 1998). These diurnal patterns of
355 NEE, GPP and ER play a strong role in regulating the seasonal carbon cycling dynamics in this
356 ecosystem.

357 We observed comparable light saturated leaf|ecosystem $A_{max}|GPP$, $T|ET$, WUE and $g_s|G_s$ responses to
358 D (Figure 5). The difference in magnitude of GPP and A_{max} at high D may be explained by the
359 proportion of shaded leaves: LAI is around 1 m^2 [leaf area] m^{-2} [ground area], a proportion of these
360 leaves are in the shadow, it is thus expected that A_{max} (expressed per m^2 of leaves) will be higher. The
361 similar magnitude for G_s and g_s was also expected, as LAI is close to 1 and R_n is not a driver for
362 stomatal conductance. The peaked pattern of T versus D, as opposite to plateaued pattern of ET, may
363 be explained by (1) the contribution of soil evaporation to ET or (2) the presence of mistletoe, known
364 for not regulating their stomata (Griebel et al., 2017). The higher magnitude of leaf water use
365 efficiency results from the combination of higher A_{max} and similar or lower leaf transpiration
366 compared to ET.

367 Our study demonstrated that canopy dynamics play an important role in regulating seasonal variations
368 in GPP even in evergreen forests. Similar observations emerged from a tropical forest, where leaf area
369 index and leaf age explained the seasonal variability of GPP (Wilson et al., 2001; Wu et al., 2016), as
370 the photosynthetic capacity (PC, the maximum rate of GPP in optimal environmental condition)
371 varied with leaf age. In the Cumberland Plain forest, periods with high LAI co-occur with mature,
372 efficient leaves, and periods with low LAI co-occur with old, less efficient leaves. LAI was correlated
373 with PC, which was probably the result of both a greater number of leaves and more efficient leaves.
374 Remotely sensed vegetation indices such as enhanced vegetation index (EVI) or normalized
375 difference vegetation index (NDVI) assess whether the target being observed contains live green
376 vegetation. In Australia, NDVI and EVI were good predictors of photosynthetic capacity in savanna,
377 mulga and Mediterranean-mallee ecosystems (Restrepo-Coupe et al., 2016). However, for
378 Cumberland Plain forest NDVI was a poor predictor of PC, which could be explained because (1)
379 greenness did not drive photosynthetic potential, which could be because the understory greening has
380 only subtle influence on PC or (2) there is a bias or a scale mismatch in the NDVI measurements.
381 Unfortunately, satellite-derived LAI values are typically inaccurate in open forests and forests in
382 southeast Australia (Hill et al., 2006), which might also indicate limitations of satellite products to
383 establish successful relations between NDVI and GPP in sclerophyll ecosystems.

384 In a global study, it was shown that mean annual NEE decreased with increasing dryness index
385 (PET/P) in sites located below 45° N latitude (Yi et al., 2010). It has also been shown that *Eucalyptus*
386 grow more slowly in warm environments (Prior and Bowman, 2014). At Cumberland Plain, and in a
387 previous study (van Gorsel et al., 2013), GPP decreased with D above a threshold of ~ 1.3 kPa. Our
388 results indicate that surface conductance (G_s) decreased above that threshold, suggesting that the
389 decrease in GPP is caused by stomatal regulation. As D correlates with air temperature, it is difficult
390 to distinguish the relative contribution of D and T_a to the decrease of G_s , but they are thought to both
391 impact G_s (Duursma et al., 2014). The Cumberland Plain has the highest mean annual temperature and
392 the highest dryness index among the four *Eucalyptus* forest eddy-covariance sites in south-east
393 Australia (Beringer et al. 2016), which could explain its unique seasonality.

394

395

5. Conclusions

396 The Cumberland Plain forest was a net C source in summer and a net C sink in winter, in contrast to
397 other Australian eucalypt forests which were net C sinks year-round. ER drove NEE seasonality, as
398 the seasonal amplitude of ER was greater than GPP. ER was high in the warmer, wetter months of
399 summer, when environmental conditions supported high autotrophic respiration and heterotrophic
400 decomposition. Meanwhile, GPP was limited by lower LAI and older leaves in early summer, and by
401 high D which limited G_s throughout the summer. Despite being evergreen, there was significant
402 temporal variation in LAI, which was correlated with monthly photosynthetic capacity. Understanding
403 LAI dynamics and its response to precipitation regimes will play a key-role in climate change
404 feedback.

405

Code and data availability

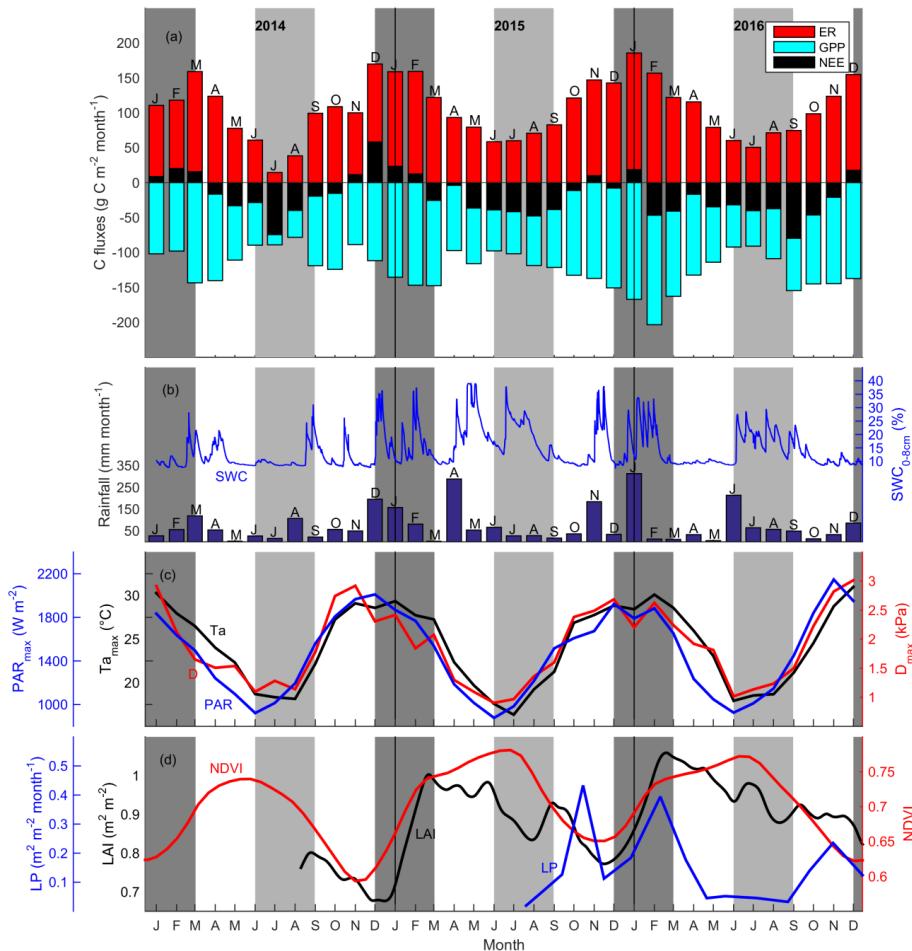
406 All the datasets and scripts used in this manuscript can be downloaded at:
407 <https://doi.org/10.5281/zenodo.1069862>

408

Author contribution

409 DT, VRD, EP, AAR conceived the project; CVMB, CM, EP, AAR, AG, MMB, collected the data and
410 assured the maintenance of the experiment; AAR, AG, CAW, EP, PI, VRD, analysed the data; AAR,
411 EP, VDR wrote the manuscript with input from all other authors.

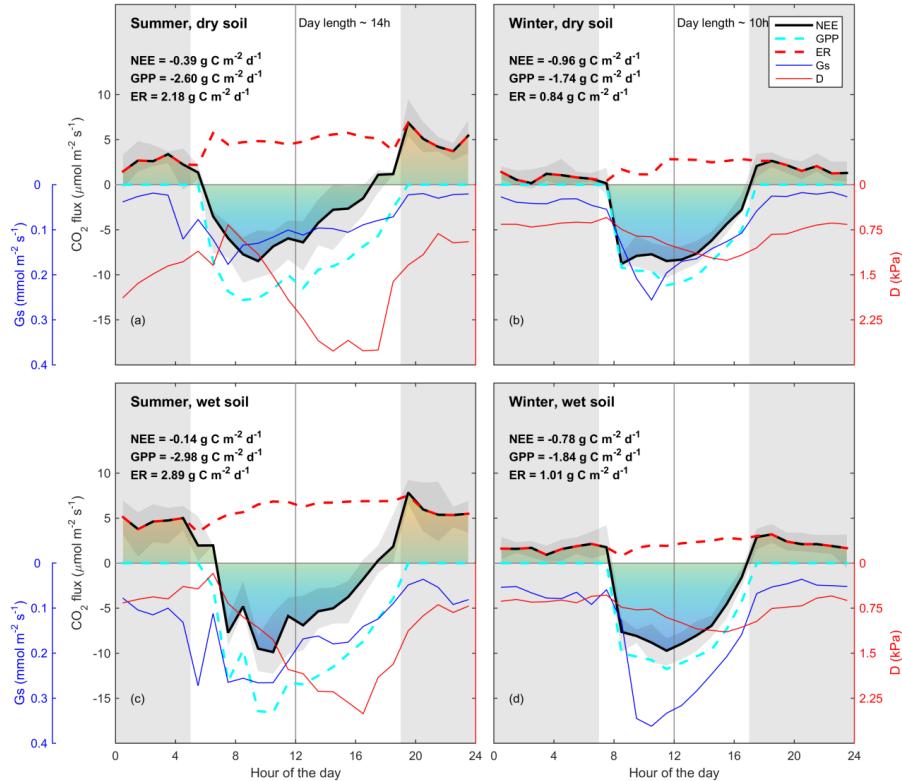
412


The authors declare that they have no conflict of interest.

413

Acknowledgements

414 The Australian Education Investment Fund, Australian Terrestrial Ecosystem Research Network, and
415 Hawkesbury Institute for the Environment at Western Sydney University supported this work. We
416 thank Jason Beringer, Helen Cleugh, Ray Leuning, Dan Metzen and Eva van Gorsel for advice and
417 support. Senani Karunaratne provided soil classification details.


418

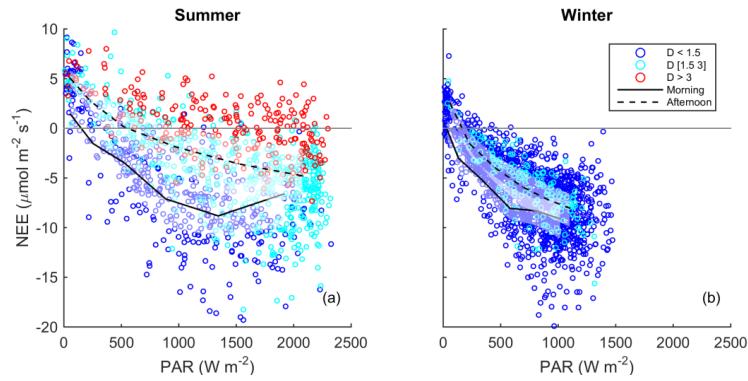
419

420 **Figure 1** a) Time series of monthly carbon flux (net ecosystem exchange (NEE), ecosystem respiration (ER) and gross
 421 primary productivity (GPP), $\text{g C m}^{-2} \text{ month}^{-1}$) (negative indicates ecosystem uptake); b) rainfall, mm month^{-1} ; soil water
 422 content from 0 to 8 cm (SWC 0-8cm, %); c) average of daily maximum for each month photosynthetically active radiation
 423 (PAR_{max}, W m^{-2}), air temperature (Ta_{max}, °C) and vapour pressure deficit (D_{max}, kPa)]. Canopy dynamics trends
 424 [normalized difference vegetation index (NDVI, unitless); d) leaf area index (LAI, $\text{m}^2 \text{ m}^{-2}$) from November 2013 to April
 425 2016 and litter production (LP, $\text{m}^2 \text{ m}^{-2} \text{ month}^{-1}$)]. Shaded areas shows summer (dark grey) and winter (light grey). Note
 426 Ta_{max} and PAR_{max} remained above 15 °C and 800 W m^{-2} .

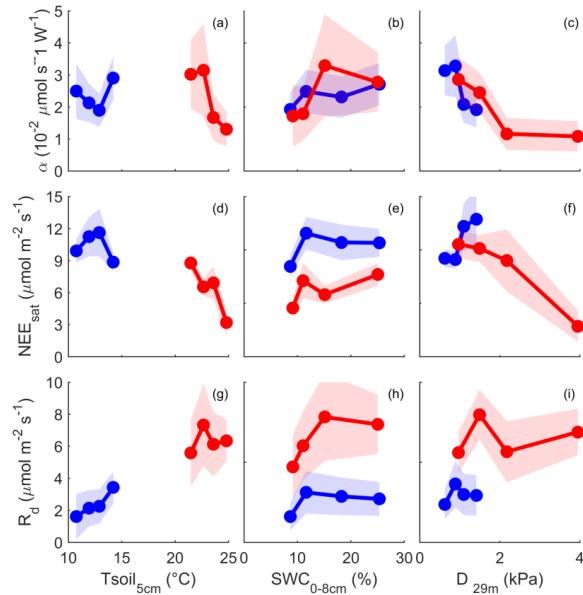
427

428

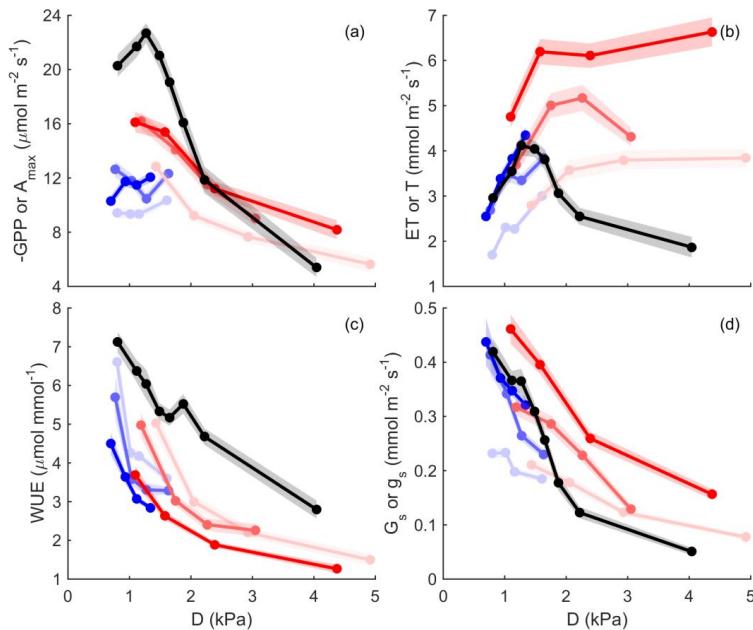
429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
Figure 2 Diurnal trend (line: median and shade: quartile) of clear-sky measured net ecosystem exchange (NEE, thick black line, $\mu\text{mol m}^{-2} \text{s}^{-1}$); estimated daytime ecosystem respiration (ER, inferred from a neural network fitted on nighttime NEE, thick dotted red line, $\mu\text{mol m}^{-2} \text{s}^{-1}$); estimated gross primary productivity (GPP, inferred as NEE – estimated daytime ER, thick dotted cyan line, $\mu\text{mol m}^{-2} \text{s}^{-1}$); measured vapour pressure deficit (D, thin red line, kPa); and estimated surface conductance (G_s , inferred from Penman-Monteith, blue line, $\text{mmol m}^{-2} \text{s}^{-1}$). Grey shade shows night-time (sunset to sunrise). NEE, GPP and ER number are calculated by integrating the diurnal fluxes as shown in the figure. “Wet” and “dry” soil is defined as below or above the median of soil water content during summer or winter. Summer is December through February. Winter is June through August, as defined by the Sydney bureau of meteorology. Colours under NEE rate are shown for visualisation. Note that there is an asymmetry between morning and afternoon NEE in summer, but not in winter. Note that ecosystem respiration (nighttime NEE) is enhanced by SWC in summer, but not in winter. Data used in this figure correspond to clear-sky half-hour values, where high quality measured data for NEE were available.


440

441


442 **Figure 3** Half-hourly measured NEE vs. PAR, coloured by D (blue, D < 1.5 kPa, cyan: D [1.5-3] kPa, red: D > 3 kPa) for (a)
443 summer, and (b) winter periods. Raw data are binned by light levels to show median (lines) and quartiles (white shades) for
444 morning (continuous lines) and afternoon (dotted lines) hours separately.

445

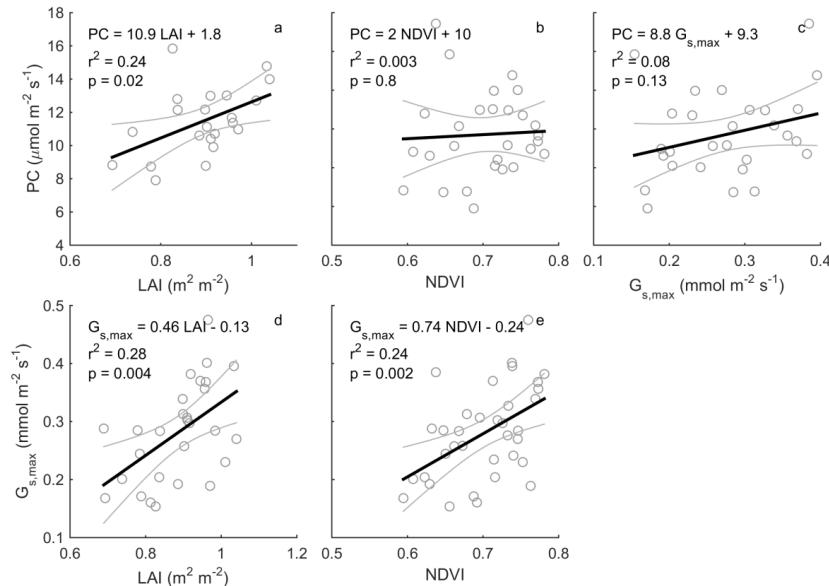


446

447 **Figure 4** NEE $\mu\text{mol m}^{-2} \text{s}^{-1}$ light response parameters, calculated for different bins of climatic drivers (soil temperature (T_{soil} ,
 448 °C) at 5cm depth, soil water content (SWC, %) from 0 cm to 8 cm depth, and atmospheric demand (D, kPa) at 30 m height,
 449 only raw, qc filtered daytime data is used. Light response curve was fitted using Mitscherlich equation (see methods), α is
 450 the initial slope, near PAR = 0 ($\mu\text{mol s}^{-1} \text{W}^{-1}$), NEE_{sat} $\mu\text{mol m}^{-2} \text{s}^{-1}$ is NEE at light saturation, and R_d $\mu\text{mol m}^{-2} \text{s}^{-1}$ is the dark
 451 respiration (NEE when PAR = 0). Blue indicates winter months, Red indicates summer months. Dots are parameters value
 452 for each quartile of driver, plotted at x = median of driver for each bin. Shading is 95% confidence interval of the parameter
 453 fit.

454

455


456 **Figure 5** Gross primary productivity or net assimilation (GPP or A_{max} , $\mu\text{mol m}^{-2} [\text{ground or leaf}] \text{s}^{-1}$), evapotranspiration or
 457 leaf transpiration (ET or T, $\text{mmol m}^{-2} [\text{ground or leaf}] \text{s}^{-1}$), water use efficiency (WUE = GPP/ET or A_{max}/T , $\mu\text{mol mmol}^{-1}$)
 458 and surface conductance or leaf conductance (G, or g_s , $\text{mmol m}^{-2} \text{s}^{-1}$) vs. vapour pressure deficit (D). Leaf level is shown in
 459 black, ecosystem scale is shown in color; summer (red) and winter (blue), at saturated PAR ($>1000 \text{ W m}^{-2}$). D is binned into
 460 4 quartiles for ecosystem and 8 for leaf; Y is mean value for each D bins, plotted at the median of D bin. Shaded area
 461 indicates the standard error of the mean. The three color intensity show SWC quantiles (SWC < 0.33, SWC [0.33-0.67] and
 462 SWC [0.67-1.00] shown in decreasing color intensity).

463

464

465

474

466 **Figure 6** Relationships between monthly photosynthetic capacity (PC, $\mu\text{mol m}^{-2} \text{s}^{-1}$), leaf area index (LAI, $\text{m}^2 \text{m}^{-2}$), 250 m^2
 467 normalized vegetation index (NDVI), and maximum surface conductance ($G_{s,\text{max}}$). Monthly PC / $G_{s,\text{max}}$ are calculated as the
 468 median / 75% quantile of half-hourly GPP / G_s when PAR [800-1200 W m^{-2}] and D [1-1.5 kPa]; rain events are filtered for
 469 $G_{s,\text{max}}$ estimation, to minimise evaporation contribution to evapotranspiration (see methods). Monthly LAI is calculated as
 470 mean of LAI smoothed by a spline. Thick black line shows a linear regression. PC vs. LAI was significant ($r^2 = 0.58$, $p =$
 471 $3.7e-05$, slope = 20.1 ± 3.8). $G_{s,\text{max}}$ vs. LAI was also significant ($r^2 = 0.28$, $p = 0.004$, slope = 0.46 ± 0.15). For PC
 472 calculation, GPP data is only used when quality-checked NEE is available (GPP = NEE measured – ER estimated by a
 473 neural network, see method).

475 **Table 1** Annual precipitation (P, mm y^{-1}), evapotranspiration (ET, mm y^{-1}), air temperature T_a ($^{\circ}$ C), net ecosystem exchange
476 (NEE, g C $m^{-2} y^{-1}$), gross ecosystem production (GPP, g C $m^{-2} y^{-1}$) and ecosystem respiration (ER, g C $m^{-2} y^{-1}$) for the three
477 year study period.

Period	P (mm y^{-1})	ET (mm y^{-1})	T_a ($^{\circ}$ C)	NEE (g C $m^{-2} y^{-1}$)	GPP (g C $m^{-2} y^{-1}$)	ER (g C $m^{-2} y^{-1}$)
2014 all	733	802	18.4	-54	-1347	1293
winter	149	142	12.8	-127	-268	141
spring	129	193	19.3	-8	-355	347
summer	279	275	22.8	97	-338	434
autumn	176	192	18.8	-15	-385	370
2015 all	978	935	18.0	-183	-1641	1458
winter	122	160	12.0	-135	-322	187
spring	237	223	19.1	-28	-429	401
summer	273	318	23.0	31	-481	512
autumn	345	234	18.1	-51	-410	359
2016 all	893	849	18.8	-337	-1735	1398
winter	335	161	13.1	-99	-283	185
spring	96	208	18.8	-135	-469	334
summer	412	308	23.7	-15	-560	545
autumn	50	172	19.6	-88	-422	334

478

479 **References**

480 Aubinet, M., Chermanne, B., Vandenhautte, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long term
481 carbon dioxide exchange above a mixed forest in the Belgian Ardennes, Agricultural and Forest
482 Meteorology, 108, 293-315, 10.1016/s0168-1923(01)00244-1, 2001.

483 Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance A Practical Guide to Measurement and
484 Data Analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer, 2012.

485 Baldocchi, D., Ryu, Y., and Keenan, T.: Terrestrial Carbon Cycle Variability, F1000Research, 5,
486 2016.

487 Baldocchi, D. D., Hicks, B. B., and Meyers, T. P.: Measuring biosphere-atmosphere exchanges of
488 biologically related gases with micrometeorological methods, Ecology, 69, 1331-1340,
489 10.2307/1941631, 1988.

490 Barr, A., Richardson, A., Hollinger, D., Papale, D., Arain, M., Black, T., Bohrer, G., Dragoni, D.,
491 Fischer, M., and Gu, L.: Use of change-point detection for friction-velocity threshold evaluation in
492 eddy-covariance studies, Agricultural and Forest Meteorology, 171, 31-45, 2013.

493 Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., de
494 Dios, V. R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N.,
495 Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C.,
496 Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I.,
497 Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and
498 Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network - OzFlux,
499 Biogeosciences, 13, 5895-5916, 10.5194/bg-13-5895-2016, 2016.

500 de Dios, V. R., Fellows, A. W., Nolan, R. H., Boer, M. M., Bradstock, R. A., Domingo, F., and
501 Goulden, M. L.: A semi-mechanistic model for predicting the moisture content of fine litter,
502 Agricultural and Forest Meteorology, 203, 64-73, 2015.

503 Dixon, R. K., Brown, S., Houghton, R. e. a., Solomon, A., Trexler, M., and Wisniewski, J.: Carbon
504 pools and flux of global forest ecosystems, Science(Washington), 263, 185-189, 1994.

505 Duursma, R. A., Barton, C. V., Lin, Y.-S., Medlyn, B. E., Eamus, D., Tissue, D. T., Ellsworth, D. S.,
506 and McMurtrie, R. E.: The peaked response of transpiration rate to vapour pressure deficit in field
507 conditions can be explained by the temperature optimum of photosynthesis, Agricultural and Forest
508 Meteorology, 189, 2-10, 2014.

509 Duursma, R. A., Gimeno, T. E., Boer, M. M., Crous, K. Y., Tjoelker, M. G., and Ellsworth, D. S.:
510 Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated
511 atmospheric CO₂ but tracks water availability, Global Change Biology, 22, 1666-1676,
512 10.1111/gcb.13151, 2016.

513 Fan, S.-M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., and Fitzjarrald, D. R.: Atmosphere-biosphere
514 exchange of CO₂ and O₃ in the central Amazon forest, 1990.

515 Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.: Post-field data quality
516 control, Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, 29,
517 181-208, 2004.

518 Foken, T., Wimmer, F., Mauder, M., Thomas, C., and Liebethal, C.: Some aspects of the energy
519 balance closure problem, Atmospheric Chemistry and Physics, 6, 4395-4402, 2006.

520 Foken, T.: The energy balance closure problem: an overview, *Ecological Applications*, 18, 1351-
521 1367, 2008.

522 Gash, J., and Culf, A.: Applying a linear detrend to eddy correlation data in realtime, *Boundary-Layer
523 Meteorology*, 79, 301-306, 1996.

524 Gimeno, T. E., Crous, K. Y., Cooke, J., O'Grady, A. P., Ósvaldsson, A., Medlyn, B. E., and Ellsworth,
525 D. S.: Conserved stomatal behaviour under elevated CO₂ and varying water availability in a mature
526 woodland, *Functional Ecology*, 30, 700-709, 2016.

527 Graham, E. A., Mulkey, S. S., Kitajima, K., Phillips, N. G., and Wright, S. J.: Cloud cover limits net
528 CO₂ uptake and growth of a rainforest tree during tropical rainy seasons, *Proceedings of the National
529 Academy of Sciences*, 100, 572-576, 2003.

530 Griebel, A., Bennett, L. T., Culvenor, D. S., Newnham, G. J., and Arndt, S. K.: Reliability and
531 limitations of a novel terrestrial laser scanner for daily monitoring of forest canopy dynamics, *Remote
532 Sensing of Environment*, 166, 205-213, 2015.

533 Griebel, A., Watson, D. M., and Pendall, E.: Mistletoe, friend and foe: synthesizing ecosystem
534 implications of mistletoe infection, *Environmental Research Letters*, 2017.

535 Hill, M. J., Senarath, U., Lee, A., Zeppel, M., Nightingale, J. M., Williams, R. D. J., and McVicar, T.
536 R.: Assessment of the MODIS LAI product for Australian ecosystems, *Remote Sensing of
537 Environment*, 101, 495-518, 2006.

538 Hinko-Najera, N., Isaac, P., Beringer, J., van Gorsel, E., Ewenz, C., McHugh, I., Exbrayat, J. F.,
539 Livesley, S. J., and Arndt, S. K.: Net ecosystem carbon exchange of a dry temperate eucalypt forest,
540 *Biogeosciences*, 14, 3781-3800, 10.5194/bg-14-3781-2017, 2017.

541 Hsu, K. I., Gupta, H. V., Gao, X., Sorooshian, S., and Imam, B.: Self-organizing linear output map
542 (SOLO): An artificial neural network suitable for hydrologic modeling and analysis, *Water Resources
543 Research*, 38, 2002.

544 Hutyra, L. R., Munger, J. W., Saleska, S. R., Gottlieb, E., Daube, B. C., Dunn, A. L., Amaral, D. F.,
545 De Camargo, P. B., and Wofsy, S. C.: Seasonal controls on the exchange of carbon and water in an
546 Amazonian rain forest, *Journal of Geophysical Research: Biogeosciences*, 112, 2007.

547 Isaac, P., Cleverly, J., McHugh, I., van Gorsel, E., Ewenz, C., and Beringer, J.: OzFlux Data: Network
548 integration from collection to curation, *Biogeosciences*, 14, 2903, 2017.

549 Jones, T. L., Tucker, D. E., and Ort, D. R.: Chilling delays circadian pattern of sucrose phosphate
550 synthase and nitrate reductase activity in tomato, *Plant Physiology*, 118, 149-158, 1998.

551 Karan, M., Liddell, M., Prober, S. M., Arndt, S., Beringer, J., Boer, M., Cleverly, J., Eamus, D.,
552 Grace, P., and Van Gorsel, E.: The Australian Supersite Network: a continental, long-term terrestrial
553 ecosystem observatory, *Science of the Total Environment*, 568, 1263-1274, 2016.

554 Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., and Meijer, H.
555 A.: Exchanges of atmospheric CO₂ and 13CO₂ with the terrestrial biosphere and oceans from 1978 to
556 2000. I. Global aspects, *Scripps Institution of Oceanography*, 2001.

557 Keith, H., van Gorsel, E., Jacobsen, K. L., and Cleugh, H. A.: Dynamics of carbon exchange in a
558 Eucalyptus forest in response to interacting disturbance factors, *Agricultural and Forest Meteorology*,
559 153, 67-81, 10.1016/j.agrmet.2011.07.019, 2012.

560 Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple parameterisation for flux
561 footprint predictions, *Boundary-Layer Meteorology*, 112, 503-523,
562 10.1023/b:boun.0000030653.71031.96, 2004.

563 Knauer, J., Werner, C., and Zaehle, S.: Evaluating stomatal models and their atmospheric drought
564 response in a land surface scheme: A multibiome analysis, *Journal of Geophysical Research: Biogeosciences*, 120, 1894-1911, 2015.

566 Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M., De Kauwe,
567 M. G., Werner, C., Keitel, C., and Kolari, P.: Towards physiologically meaningful water-use
568 efficiency estimates from eddy covariance data, *Global Change Biology*, 2017.

569 Kolari, P., Lappalainen, H. K., Hänninen, H., and Hari, P.: Relationship between temperature and the
570 seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone,
571 *Tellus B*, 59, 542-552, 2007.

572 Lim, P. O., Kim, H. J., and Gil Nam, H.: Leaf senescence, *Annu. Rev. Plant Biol.*, 58, 115-136, 2007.

573 Lindroth, A., Klemmedsson, L., Grelle, A., Weslien, P., and Langvall, O.: Measurement of net
574 ecosystem exchange, productivity and respiration in three spruce forests in Sweden shows
575 unexpectedly large soil carbon losses, *Biogeochemistry*, 89, 43-60, 2008.

576 Lloyd, J., and Taylor, J. A.: On the temperature-dependence of soil respiration, *Functional Ecology*, 8,
577 315-323, 10.2307/2389824, 1994.

578 Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous,
579 K. Y., De Angelis, P., Freeman, M., and Wingate, L.: Reconciling the optimal and empirical
580 approaches to modelling stomatal conductance, *Global Change Biology*, 17, 2134-2144,
581 10.1111/j.1365-2486.2010.02375.x, 2011.

582 Mitscherlich, E. A.: Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrages,
583 *Landw. Jahrb.*, 38, 537-552, 1909.

584 Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging, detrending, and filtering of eddy
585 covariance time series, in: *Handbook of micrometeorology*, Springer, 7-31, 2004.

586 Moncrieff, J. B., Massheder, J. M., deBruin, H., Elbers, J., Friberg, T., Heusinkveld, B., Kabat, P.,
587 Scott, S., Soegaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum, sensible
588 heat, water vapour and carbon dioxide, *Journal of Hydrology*, 189, 589-611, 1997.

589 Monteith, J. L.: Evaporation and environment, *Symp. Soc. Exp. Biol.*, 1965, 4,

590 Moore, C. E., Keenan, T. F., Duursma, R. A., van Dijk, A. I., Hutley, L. B., Taylor, J. R., and Liddell,
591 M. J.: Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote
592 sensing and digital repeat photography, *Biogeosciences*, 13, 5085, 2016.

593 Munné-Bosch, S., and Alegre, L.: Die and let live: leaf senescence contributes to plant survival under
594 drought stress, *Functional Plant Biology*, 31, 203-216, 2004.

595 Novick, K. A., Oishi, A. C., Ward, E. J., Siqueira, M. B. S., Juang, J. Y., and Stoy, P. C.: On the
596 difference in the net ecosystem exchange of CO₂ between deciduous and evergreen forests in the
597 southeastern United States, *Global Change Biology*, 21, 827-842, 10.1111/gcb.12723, 2015.

598 Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A.,
599 Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L. X., and Phillips, R. P.: The

600 increasing importance of atmospheric demand for ecosystem water and carbon fluxes, *Nature Climate
601 Change*, 6, 1023-1027, 10.1038/nclimate3114, 2016.

602 Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L.,
603 Shvidenko, A., Lewis, S. L., and Canadell, J. G.: A large and persistent carbon sink in the world's
604 forests, *Science*, 333, 988-993, 2011.

605 Pook, E.: Canopy dynamics of *Eucalyptus maculata* Hook. II. Canopy leaf area balance, *Australian
606 Journal of Botany*, 32, 405-413, 1984.

607 Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G.,
608 Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., and van der Werf, G. R.: Contribution of semi-
609 arid ecosystems to interannual variability of the global carbon cycle, *Nature*, 509, 600-603,
610 10.1038/nature13376, 2014.

611 Prior, L. D., and Bowman, D. M.: Big eucalypts grow more slowly in a warm climate: evidence of an
612 interaction between tree size and temperature, *Global change biology*, 20, 2793-2799, 2014.

613 Restrepo-Coupe, N., Huete, A., Davies, K., Cleverly, J., Beringer, J., Eamus, D., Gorsel, E. v., Huty, L. B., and Meyer, W. S.: MODIS vegetation products as proxies of photosynthetic potential along a
614 gradient of meteorologically and biologically driven ecosystem productivity, *Biogeosciences*, 13,
615 5587-5608, 2016.

616 Restrepo-Coupe, N., Levine, N. M., Christoffersen, B. O., Albert, L. P., Wu, J., Costa, M. H.,
617 Galbraith, D., Imbuzeiro, H., Martins, G., and Araujo, A. C.: Do dynamic global vegetation models
618 capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison, *Global
619 change biology*, 23, 191-208, 2017.

620 Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., Da Rocha, H. R., De
621 Camargo, P. B., Crill, P., Daube, B. C., and De Freitas, H. C.: Carbon in Amazon forests: unexpected
622 seasonal fluxes and disturbance-induced losses, *Science*, 302, 1554-1557, 2003.

623 Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., and Bondeau, A.: Recent patterns and mechanisms of carbon exchange by terrestrial
624 ecosystems, *Nature*, 414, 169-172, 2001.

625 Thom, A.: Momentum, mass and heat exchange of vegetation, *Quarterly Journal of the Royal
626 Meteorological Society*, 98, 124-134, 1972.

627 Tjoelker, M. G., Oleksyn, J., and Reich, P. B.: Modelling respiration of vegetation: evidence for a
628 general temperature-dependent Q10, *Global Change Biology*, 7, 223-230, 2001.

629 Trenberth, K. E.: What are the seasons?, *Bulletin of the American Meteorological Society*, 64, 1276-
630 1282, 1983.

631 van Gorsel, E., Berni, J. A. J., Briggs, P., Cabello-Leblie, A., Chasmer, L., Cleugh, H. A., Hacker, J.,
632 Hantson, S., Haverd, V., Hughes, D., Hopkinson, C., Keith, H., Kljun, N., Leuning, R., Yebra, M.,
633 and Zegelin, S.: Primary and secondary effects of climate variability on net ecosystem carbon
634 exchange in an evergreen *Eucalyptus* forest, *Agricultural and Forest Meteorology*, 182-183, 248-256,
635 10.1016/j.agrformet.2013.04.027, 2013.

636 Vickes, D., and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data,
637 *Journal of Atmospheric and Oceanic Technology*, 14, 512-526, 1997.

640 Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects
641 due to heat and water vapour transfer, *Quarterly Journal of the Royal Meteorological Society*, 106,
642 85-100, 1980.

643 Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt correction algorithms,
644 *Boundary-Layer Meteorology*, 99, 127-150, 2001.

645 Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C.,
646 Ceulemans, R., Dolman, H., and Field, C.: Energy balance closure at FLUXNET sites, *Agricultural
647 and Forest Meteorology*, 113, 223-243, 2002.

648 Wilson, K. B., Baldocchi, D. D., and Hanson, P. J.: Leaf age affects the seasonal pattern of
649 photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest, *Plant Cell and
650 Environment*, 24, 571-583, 10.1046/j.0016-8025.2001.00706.x, 2001.

651 Windsor, D. M.: Climate and moisture variability in a tropical forest: long-term records from Barro
652 Colorado Island, Panama, 1990.

653 Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., Guan, K. Y.,
654 Stark, S. C., Christoffersen, B., Prohaska, N., Tavares, J. V., Marostica, S., Kobayashi, H., Ferreira,
655 M. L., Campos, K. S., da Silva, R., Brando, P. M., Dye, D. G., Huxman, T. E., Huete, A. R., Nelson,
656 B. W., and Saleska, S. R.: Leaf development and demography explain photosynthetic seasonality in
657 Amazon evergreen forests, *Science*, 351, 972-976, 10.1126/science.aad5068, 2016.

658 Xia, J. Y., Niu, S. L., Ciais, P., Janssens, I. A., Chen, J. Q., Ammann, C., Arain, A., Blanken, P. D.,
659 Cescatti, A., Bonal, D., Buchmann, N., Curtis, P. S., Chen, S. P., Dong, J. W., Flanagan, L. B.,
660 Frankenberg, C., Georgiadis, T., Gough, C. M., Hui, D. F., Kiely, G., Li, J. W., Lund, M., Magliulo,
661 V., Marcolla, B., Merbold, L., Montagnani, L., Moors, E. J., Olesen, J. E., Piao, S. L., Raschi, A.,
662 Roupsard, O., Suyker, A. E., Urbaniak, M., Vaccari, F. P., Varlagin, A., Vesala, T., Wilkinson, M.,
663 Weng, E., Wohlfahrt, G., Yan, L. M., and Luo, Y. Q.: Joint control of terrestrial gross primary
664 productivity by plant phenology and physiology, *Proceedings of the National Academy of Sciences of
665 the United States of America*, 112, 2788-2793, 10.1073/pnas.1413090112, 2015.

666 Yi, C., Ricciuto, D., Li, R., Wolbeck, J., Xu, X., Nilsson, M., Aires, L., Albertson, J. D., Ammann, C.,
667 and Arain, M. A.: Climate control of terrestrial carbon exchange across biomes and continents,
668 *Environmental Research Letters*, 5, 034007, 2010.

669 Zhang, Y., Tan, Z., Song, Q., Yu, G., and Sun, X.: Respiration controls the unexpected seasonal
670 pattern of carbon flux in an Asian tropical rain forest, *Atmospheric Environment*, 44, 3886-3893,
671 2010.

672